AudioSense:
Enabling Real-time Evaluation of Hearing Aid Technology In-Situ

Syed Shabih Hasan, Farley Lai, Octav Chipara
Department of Computer Science/Aging Mind and Brain Initiative (AMBI)

Yu-Hsiang Wu
Department of Communication Sciences and Disorders
Hearing Loss in US

- 35 million people in the US have hearing loss [1]
 - ⇒ leads to communication difficulties, depression & dementia
- Primary intervention is hearing aid amplification
 - only ≃ 50% of hearing aid users are satisfied with performance in noisy environments

Hearing Loss in US

- 35 million people in the US have hearing loss \([1]\)
 - \(\Rightarrow\) leads to communication difficulties, depression & dementia
- Primary intervention is hearing aid amplification
 - only \(\approx 50\%\) of hearing aid users are satisfied with performance in noisy environments

Challenge of evaluating hearing aids

• Listening contexts
Challenge of evaluating hearing aids

• Listening contexts

social context
Challenge of evaluating hearing aids

- Listening contexts

Existing Evaluation Methodologies

- Manual data collection: self-reports or diary methods
 - subjective, memory bias, scalability
- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world listening contexts
Existing Evaluation Methodologies

- Manual data collection: self-reports or diary methods
 - subjective, memory bias, scalability
- Speech-in-noise tests: assess aspects of hearing aid technology
 - not representative of real-world listening contexts

Existing evaluation methods are poor predictors of real-world performance
AudioSense

• Provides clinicians with subjective and objective measures of hearing aid performance and listening contexts
 • data is collected in real-time and in-situ
 • subjective: Ecological Momentary Assessment (EMA)
 • objective: measures derived from audio and GPS
• EMA has been previous used by Henry et. al.[1] and Galvez[2]
• do not collect sensor data or track patients in real-time

Architecture of AudioSense

Android Phones

Web Interface

<table>
<thead>
<tr>
<th>Condition</th>
<th>Last user survey</th>
<th>Last timer survey</th>
<th>Last log time</th>
<th>User count</th>
<th>Timer count</th>
<th>Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>June 12, 2013, 10:54 a.m.</td>
<td>June 11, 2013, 8:09 p.m.</td>
<td>June 12, 2013, 11:19 a.m.</td>
<td>7</td>
<td>7 / 63 (3 snooze)</td>
<td>11.67</td>
</tr>
<tr>
<td>33</td>
<td>June 12, 2013, 11:29 a.m.</td>
<td>June 12, 2013, 1:10 p.m.</td>
<td>June 12, 2013, 1:10 p.m.</td>
<td>1</td>
<td>2 / 5 (0 snooze)</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Extensible Analysis Environment
Architecture of AudioSense

- EMA
- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users
Architecture of AudioSense

- EMA
- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

<table>
<thead>
<tr>
<th>Android Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Web Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time compliance information</td>
</tr>
<tr>
<td>Extensible data analysis environment</td>
</tr>
<tr>
<td>Scales to support multiple concurrent users</td>
</tr>
</tbody>
</table>
Architecture of AudioSense

- Android Phones
 - EMA
 - Extensible user interface and effective alarms
 - Energy efficient data collection, high reliability

- Web Server
 - Real-time compliance information
 - Extensible data analysis environment
 - Scales to support multiple concurrent users
EMA Component - Survey Delivery

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized \((T_{\text{offset}} + [0, T_{\text{rand}}]) \)
 - fixed \((T_{\text{offset}}) \)
- Delivery parameters are customized by clinicians
Surveys are alarm-triggered or user-initiated

Alarm-triggered

- randomized \((T_{\text{offset}} + [0, T_{\text{rand}}])\)
- fixed \((T_{\text{offset}})\)

Delivery parameters are customized by clinicians
- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized $(T_{\text{offset}} + [0, T_{\text{rand}}])$
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians
EMA Component - Survey Delivery

Collection Alarm, data collection starts

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized \((T_{\text{offset}} + [0, T_{\text{rand}}])\)
 - fixed \((T_{\text{offset}})\)
- Delivery parameters are customized by clinicians
EMA Component - Survey Delivery

- Surveys are alarm-triggered or user-initiated
- Alarm-triggered
 - randomized ($T_{\text{offset}} + [0, T_{\text{rand}}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians
Surveys are alarm-triggered or user-initiated

- Alarm-triggered
 - randomized ($T_{offset} + [0, T_{rand}]$)
 - fixed (T_{offset})
- Delivery parameters are customized by clinicians
Architecture of AudioSense

Android Phones
- EMA
- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server
- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users
User Interface Design

- Iterative design based on patient feedback
 - patients of hearing loss tend to be older, may have impaired vision ⇒ larger fonts, bigger buttons, contrasting colors
- Surveys are adaptive
Architecture of AudioSense

Android Phones

- EMA
- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users
Alarms

- Design refined over several iterations based on patient feedback
- Challenge: find sweet-spot between invasiveness and compliance
Alarms

- Design refined over several iterations based on patient feedback
- Challenge: find sweet-spot between invasiveness and compliance

Alarms not noticed by the subjects
Alarms

- Design refined over several iterations based on patient feedback
- Challenge: find sweet-spot between invasiveness and compliance

Alarms not noticed by the subjects

- loud ringtones, screen and camera flash blinking
- subjects can switch to vibration mode
Architecture of AudioSense

Android Phones

- EMA
- Extensible user interface and effective alarms
- Energy efficient data collection, high reliability

Web Server

- Real-time compliance information
- Extensible data analysis environment
- Scales to support multiple concurrent users
Energy Efficiency

- Independent pipelines for processing sound, GPS, and uploading
- Shared buffering to mitigate impact of Garbage Collection
Energy Efficiency

- Independent pipelines for processing sound, GPS, and uploading
- Shared buffering to mitigate impact of Garbage Collection
Energy Efficiency

- Independent pipelines for processing sound, GPS, and uploading

- Shared buffering to mitigate impact of Garbage Collection
Reliability

• Reliability in terms of uploading the data

• Issue: unreliable network connections
 • caching data locally until a connection is available
 • vast amounts of memory available
 • store several days worth of data
Performance Analysis

- Testing environment
 - surveys delivered every 5 min, sensors sampled for 3 min.
 - tested using WiFi at home to simulate natural environment
 - test run for 70 minutes
Reliability
Reliability

network disconnection
Reliability

all files uploaded
Reliability

Achieved 100% reliability in spite of network disconnections!
Power Consumption

- CPU Power
- LCD power

CPU Power Consumption (mW)

Time (min)
Power Consumption

High power state (acquire power-lock)
Power Consumption

Low power state (release power-lock)
Power Consumption

Reconnection attempts
Power Consumption

Lasted for 3 days without recharging
Recent Results for Reliability

98.7% reliable even in a clinical deployment
Conclusions and Future Directions

- AudioSense: a new evaluation mechanism for hearing aids combines EMA and sensor data (audio + GPS)
 - in-situ, just-in-time, and scalable
 - patient compliance: real-time tracking, alarms design, and energy efficient
 - reliable and real-time data collection

- Future work:
 - evaluated through a 50 user clinical study
 - study correlations between:
 - listening contexts and patient compliance
 - measures listening context and hearing aid performance
Acknowledgements

• Audiology collaborator: Elizabeth Stangl

• National Science Foundation
 (grant # 1144664)

• National Institutes of Deafness and Other Communication Disorders - National Institutes of Health
 (grant # IR03DC012551-01)
Questions?
Server Backend

- Provides three components
 - web portal, database, and audio analysis environment
- Web portal + database
 - provides secure access to real-time data via web interface
 - built on Django+SQLite
 - serves multiple concurrent clients
- Audio analysis environment
 - invoked on each audio file submission
 - uses MATLAB ⇒ extensible
 - e.g. SNR calculation
Server Backend

- Provides three components: web portal, database, and audio analysis environment.
 - Web portal + database: provides secure access to real-time data via web interface. Built on Django+SQLite, serves multiple concurrent clients.
 - Audio analysis environment: invoked on each audio file submission, uses MATLAB.

- e.g. SNR calculation
Clinician’s options

- Patient ID
- Enter session number
- Survey offset (mins)
- Survey random (mins)
- Survey timeout (mins)
- Survey delay (mins)
- Snooze

Start time

- 9:35
- 10:36 AM
- 11:37 PM
Detailed Reliability

![Graph showing reliability of different patient IDs with categories Audio, GPS, Survey, and Overall.](image-url)